SUBJECTIVE EXAM <u>Subjective *Asterisks* Signs/Symptoms:</u> (Aggravating/Easing factors, Description/location of symptoms, Behavior, Mechanism of injury): - 28 yo male insurance salesman - 3 weeks ago sliding into second base (head first), hit ® shoulder awkwardly outstretched - Pain deep non specific anterior>posterior shoulder pain - Unable to throw; unable to return to swimming/training for Triathlon season - Slight/intermittent "clicking/popping", worse since injury - Painful when reaching overhead. www.vompti.com | STRUCTURE at F Joints in/refer to the painful region | Myofascial tissue in/refer to the painful region | Non Contractile
tissue in/refer to the
painful region | Neural tissue
in/refer to the
painful region | Other structures
that must be
examined – non
MSK | |---|--|--|---|---| | GH
AC
SC
Scapulothoracic
Cervical referred (C4-6) | RTC –
Supraspinatus,
Infraspinatus,
Teres, Subscap.
Biceps
Pecs | Labrum- Superior
(SLAP), Inferior
(Bankart); SA
bursa; Capsular
laxity; GHL-inferior,
medial, superior
bands; AC ligts | Suprascapular n.;
Cervical
radiculopathy (C5) | | Primary HYPOTHESIS after Subjective Examination: Primary IMP with RTC tendonopathy following trauma Differential List (Rank/List in order to rule out): Bankart lesion, Labral pathology, RTC tear, Biceps pathology/tear; MDI/laxity; AC sprain; Cervical referred/radic #### **Acute Dislocation** - Young patients (<24 years) - 97%: Bankart lesions - 89%: Hill-Sachs lesions - 10% incidence of SLAP lesions - No rotator cuff tears - Progressive labral-ligamentous injury and degeneration with increasing episodes of dislocation - Postoperative arthritis correlated with an increased number of dislocations - Reoccurrence rates: - -72-95% < 20 yo - 70-82% 20- 30 yo - 14-22% >50 yo Boone JL BJSM 2010 Orthopaedic Manual Physical Therapy Series 2017-2018 www.vompti.com #### **Acute Dislocation - Recommendations** - Young patients (15-25 years) - Early Surgical Repair - Shown to reduce their recurrence rate from 80-90% to 3-15% and improve overall quality of life - Patients aged 25–40 years - Initial trial of non-operative management - Risk of re-dislocation is much lower at 20-30% - Patients >40 yo - Typically manage them <u>non-operatively</u> - Low recurrence rate of 10–15% - Address associated injuries - RTC tears - Bone defects - Neurological injury Handoll HH Cochrane Database Syst Rev 2004 Orthopaedic Manual Physical Therapy Series 2017-2018 # Diagnostic accuracy of five orthopedic clinical tests for diagnosis of superior labrum anterior posterior (SLAP) lesions J Shoulder Elbow Surg (2012) 21, 13-22 , v siloulder Ellow Surg (2012) 21, 13 22 Chad Cook, PT, PhD, MBA^{a,*}, Stacy Beaty, MD^b, Michael J. Kissenberth, MD^c, Paul Siffri, MD^c, Stephan G. Pill, MD^c, Richard J. Hawkins, MD^c - 5 SLAP tests - O'Brien's - Dynamic LabralShear Test - Speed's - Biceps Load II - LabralTension - MRI - Confirmed Arthroscopically - None provided diagnostic utility - Stand alone - Clustered - 56% Concomitant findings - <u>Biceps Load II</u> test demonstrated utility in identifying patients with a <u>SLAP-only</u> lesion, with a PPV = 26 rthopaedic Manual Physical Therapy Series 2017-2018 www.vompti.com ### **Choosing which SLAP test** **Subjective Exam should guide your Objective Exam** - (1) Overhead Athletes that present with peel-back lesions - (2) Compression injuries from someone that falls onto an outstretched arm or on the side of the shoulder. This will compress and sheer the labrum, similar to a meniscus tear - (3) Traction injuries from a sudden eccentric biceps contraction (least common) - Peel-Back Injury: - Biceps Load II - Crank - Compression Injury: - Active Compression - Compression Rotation - Passive Distraction - Dynamic Labral Shear - Traction Injury: - Speed's - Active Compression Orthopaedic Manual Physical Therapy Series 2017-2018 #### **Glenoid Labral Tears: Presentation** - Hx repetitive overhead / long head biceps eccentrics - Sx ↑ with arm in overhead position - Deep, Non-specific post shoulder ache - Mechanical signs/sxs: painful or non-painful pop/catch/click - Hx of dislocation / subluxation - C/o instability - Click/catch may be reproduced w/ special tests - Additional Dx?: Impingement, GH instability, RTC tear # GIRD is a loss of IR ROM in the presence of a loss of TRM Loss of side-to-side IR is actually a normal anatomical variation in overhead athletes and should not be considered pathological GIRD unless there is a subsequent loss of total rotational motion in the dominant arm as well. Orthopaedic Manual Physical Therapy Series 2017-2018 www.vompti.com ## GIRD = (Side-to-side difference in ER) + (Side-to-side difference in IR) - <u>Player 1</u> = (D ER 120 deg ND ER 100 deg = +20 deg ER) + (D IR 60 deg – ND IR 80 deg = -20 deg IR) = 0 deg - Loss of 20 degrees this is <u>not pathological GIRD</u> because total motion is the same bilaterally - Player 2 = (D ER 120 deg ND ER 100 deg = +20 deg ER) + (D IR 35 deg ND IR 80 deg = -45 deg IR) = -25 deg GIRD - This represents a <u>pathological GIRD</u> because both IR and total rotational motion are limited Orthopaedic Manual Physical Therapy Series 2017-2018 #### What is your primary treatment Objective after initial evaluation? - Education: Posture Scapular position at work, relative rest (overhead) - Manual Therapy: (Specific Technique) Post RTC mobilization (STM), Inferior GH mobilization - Exercise Prescription: (Specific) Squat-reach (high/low row) – Eccentric serratus, Mid/low trap activation; Cross body stretching Other: Self mobilization to post RTC Orthopaedic Manual Physical Therapy Series 2017-2018 www.vompti.com ## Key Factors in the Rehabilitation of Shoulder Instability - · Chronicity of Shoulder Instability - Degree of Shoulder Instability - Concomitant Pathology - Direction of Shoulder Instability - Neuromuscular Control - Pre-Injury Activity Level www.mikereinold.com Orthopaedic Manual Physical Therapy Series 2017-2018 | Stroke Phase | Correct Freestyle
Biomechanics | Incorrect Freestyle
Biomechanics | Relevance of Incorrect Biomechanics to Shoulder Pain | | | |--------------|--|---|--|--|--| | | | | | | | | Hand entry | Hand enters water forward
and lateral to the head,
medial to the shoulder. ⁶
Figure 2a | Hand enters further away
from or crosses the
midline of the long axis of
the body. ^{4,8,14} Figure 2b | Increases impingement to the anterior
shoulder. ⁴ Mimics Neer impingement
testing position. ¹⁴ | | | | | Little finger– or fingers-first
hand entry. ⁴ Figure 3a | Thumb-first hand entry. ⁴
Figure 3b | Stresses the biceps attachment to the anterior labrum. ⁴ | Sports Health 2014 Virag B | | | | | | Orthon | aedic Manual Physical Therapy S | www.vompti.com | | | | | Stroke Phase | Correct Freestyle
Biomechanics | Incorrect Freestyle
Biomechanics | Relevance of Incorrect Biomechanics to Shoulder Pain | | |--------------|--|--|---|--| | | | | | | | Pull-through | Elbow kept higher than
hand and points laterally
throughout pull. ² Figure 4a | Dropped elbow during pull-
through. 15 Figure 4b | Increases external rotation, placing muscles of propulsion at mechanical disadvantage. ⁷ | | | | Swimmer should use
a straight back pull-
through. ² Figure 5a | S-shaped pull through or
excessive horizontal
adduction past body
midline during pulling. ⁴
Figure 5b | Increases time spent in the impingement position. ⁴ Mimics Hawkins Kennedy impingement testing position of horizontal adduction, flexion, and internal rotation. | | | | | | | | | | Sports Health 2014 Virag B | | | | | Orthopa | nedic Manual Physical Therapy S | eries 2017-2018 | www.vompti.com | | | Stroke Phase | Correct Freestyle
Biomechanics | Incorrect Freestyle
Biomechanics | Relevance of Incorrect Biomechanics
to Shoulder Pain | |--------------|---|--|--| | | | | | | Recovery | Elbow kept higher than
the wrist throughout the
recovery phase. 4.15
Figure 6a | Dropped elbow during
recovery phase. ¹⁴
Figure 6b | Leads to an improper entry position with
the elbow entering the water before
the hand. The water will cause an
upward force on the dropped humerus,
leading to its superior translation
and subacromial impingement in the
shoulder. ¹⁴ | | | Body roll of ~45° along the longitudinal axis of the body. 2.4 Figure 7a | Body roll that is greater or less than 45°.4 Figure 7b | Excessive roll can lead to crossover entry position during the hand entry and/or pull-through phase. A lack of roll during recovery can increase mechanical stress on the shoulder and lead to improper hand entry position. | The Advanced Throwers Ten Exercise Program: A New Exercise Series for Enhanced Dynamic Shoulder Control in the Overhead Throwing Athlete - IR/ER tubing at 0° of abduction seated on stability ball - Full can seated on stability ball - Lateral raise to 90° of abduction seated on stability ball - Side-lying external rotation (plank) - T raises prone on stability ball - Y raises prone on stability ball Phys Sp Med 2011_Wilk KE www.vompti.com The Advanced Throwers Ten Exercise Program: A New Exercise Series for Enhanced Dynamic Shoulder Control in the Overhead Throwing Athlete Phys Sp Med 2011_Wilk KE - · Prone row into ER on stability ball - Lower Trapezius 5 Series - Shoulder extension in ER seated on stability ball - Shoulder extension at 45° in ER seated on stability ball - Standing wall circle slides - Standing low row - Standing table press-downs with scapular depression - Biceps curls/triceps extensions seated on stability ball - Wrist flexion/extension and supination/pronation www.vompti.com