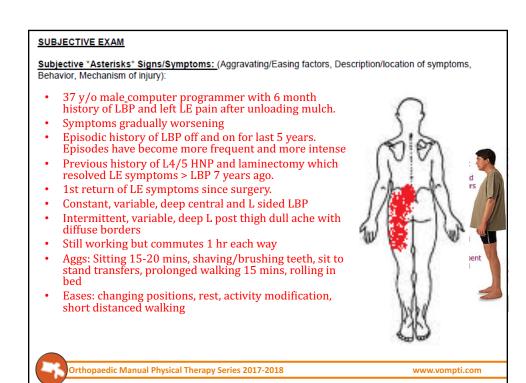

LUMBAR SPINE CASE #2

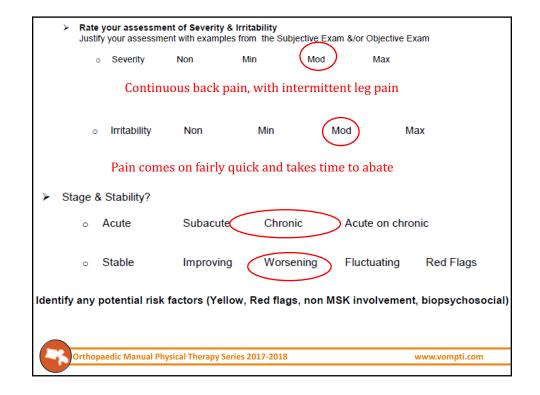
Aaron Hartstein, PT, DPT, OCS, FAAOMPT A.J. Lievre, PT, DPT, OCS, CMPT

Orthopaedic Manual Physical Therapy Series Charlottesville 2017-2018

VOMPTI_CLINICAL REASONING FORM

Body Chart – Initial Hypothesis:


L4-5, 5-S1 disc, facet (somatic)


L4-5, 5-1 radiculopathy

SIJ pain

Extra-articular hip pathology

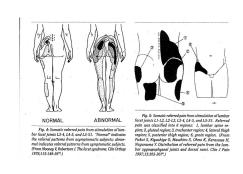
Orthopaedic Manual Physical Therapy Series 2017-2018

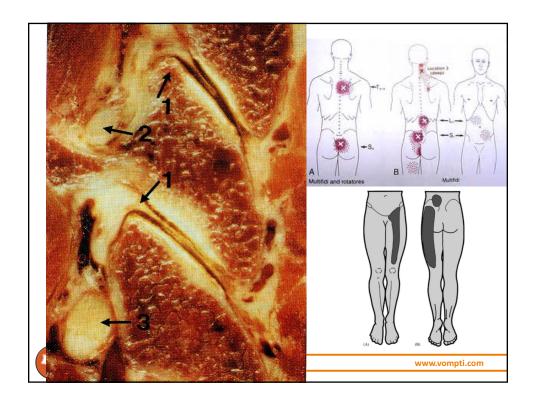
STRUCTURE at Fault:					
Joints in/refer to the painful region	Myofascial tissue in/refer to the painful region	Non Contractile tissue in/refer to the painful region	Neural tissue in/refer to the painful region	Other structures that must be examined – non MSK	
L4-S1 facets	Lumbar multifidus	L4-S1 disc	L4-S1 nerve	Visceral? Spondyloar	
SIJ	Glute med/min,	Iliolumbar ligament	Toots	thropathy?	
Hip	max Piriformis, hamstrings	Pelvis/Sacrum			

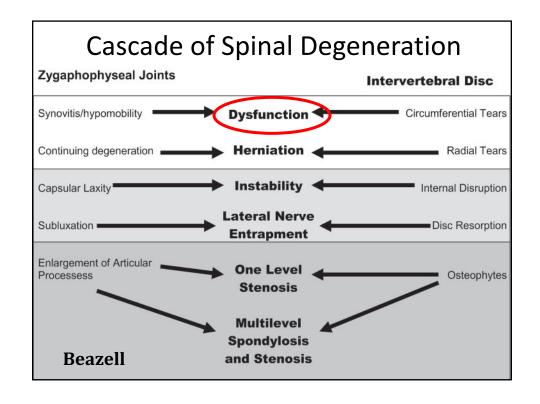
Primary HYPOTHESIS after Subjective Examination:

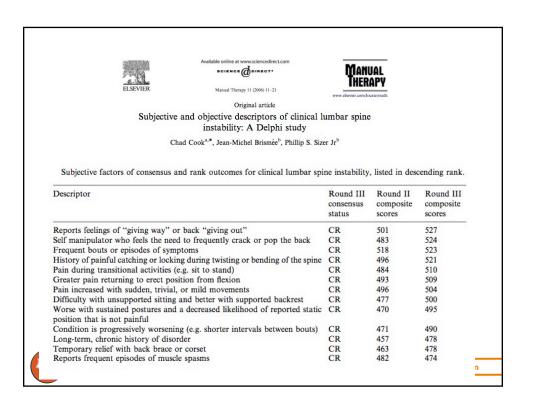
L4-5/5-S1 somatic/ facet due to clinical instability

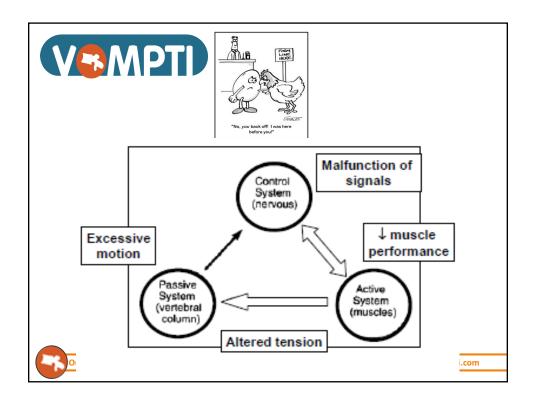
Differential List (Rank/List in order to rule out):

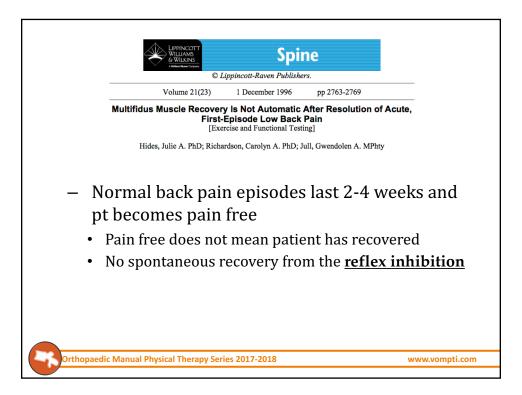

SIJ Hip Pathology

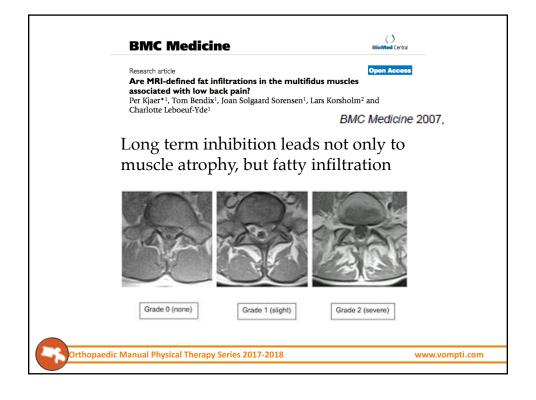

www.vompti.com

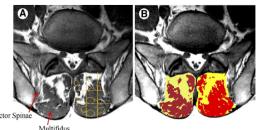

Facet Joint Pain


- Joint surface or restraining tissues being strained (capsule/ligaments)
 - Innervated by medial branch of the dorsal rami
- Irritation leads to local back pain and referred pain
 - Typically referred into the buttock and posterior thigh
 - Referral down the leg if stimulus is strong enough

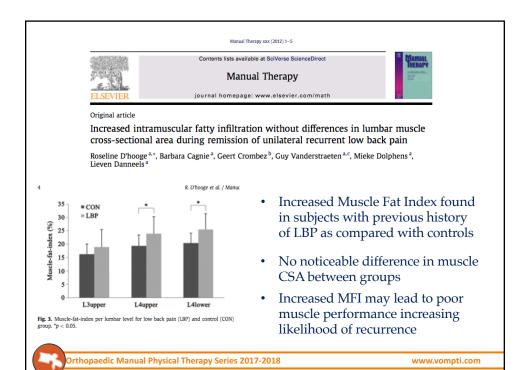








Multifidus Atrophy Is Localized and Bilateral in Active Persons With Chronic Unilateral Low Back Pain


George J. Beneck, PhD, PT, Kornelia Kulig, PhD, PT

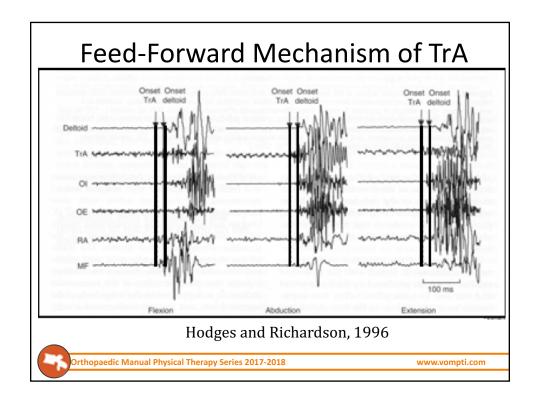
Arch Phys Med Rehabil Vol 93, February 2012

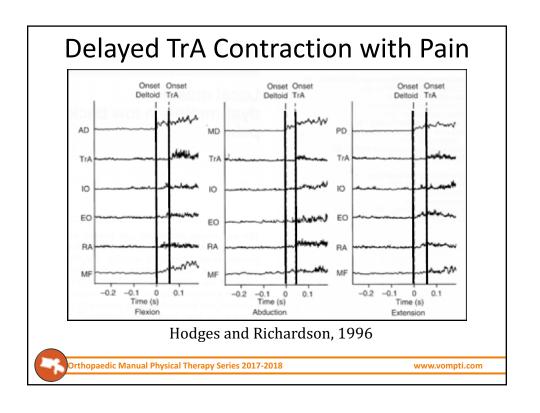
- Chronic unilateral LBP leads to segmental bilateral multifidus atrophy
- Acute LBP = unilateral loss
- Reduces capacity to control intersegmental motion

Orthopaedic

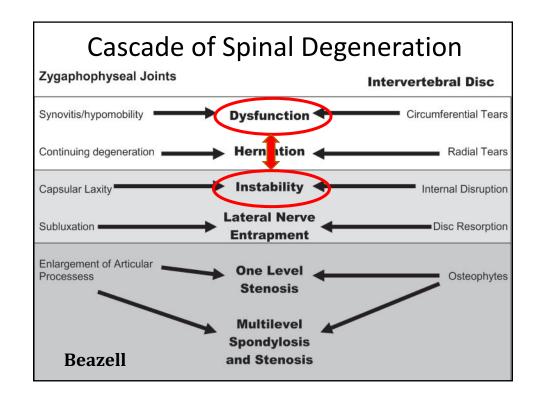
Multifidus Evidence

- 80% of all LBP demonstrated atrophy (Kader et al, 2000)
- LM atrophy more pronounced on side of surgery (Mattila et al, 1986; Hides et al 1994)
- Dec EMG activity at unstable segment (Sihvonen et al, 1995)
- Dec endurance if LBP in elite rowers
- Inc atrophy/fatty infiltrate in those with poor outcomes after surgery (Ford et al, 1983)
- Inc atrophy associated with poor outcomes after laminectomy (Rantanen et al, 1994)
- Inc recovery of muscle after surgery in those with favorable post-op outcomes (Sihvonen et al, 1995)




www.vompti.com

Evidence for altered neural and active control systems


- Delayed TrA contraction in subjects with LBP
 - Hodges and Richardson, 1996, Spine
- Altered lumbopelvic recruitment in presence of SIJ pain
 - Hungerford, 2003, Spine
- Altered abdominal recruitment after exercise intervention
 - O'Sullivan, 1998, *JOSPT*
- RCT with improved outcomes in instability patients after stabilization training
 - O'Sullivan, 1997, Spine

Lumbar Objective Examination

- · Observation/Postural Assessment/Functional Testing
- Lumbar AROM/PROM/Resisted Testing
 - Quadrants
- SIJ Screening
- · Neurological Testing
 - Segmental
 - Central
- Neurodynamic Testing
- Provocation Testing
 - PA, Compression, torsion
- · Biomechanical Examination
 - Lumbar PPIVMs
 - Lumbar PAIVMs
- · What else to assist R/I primary hypothesis?

www.vompti.com

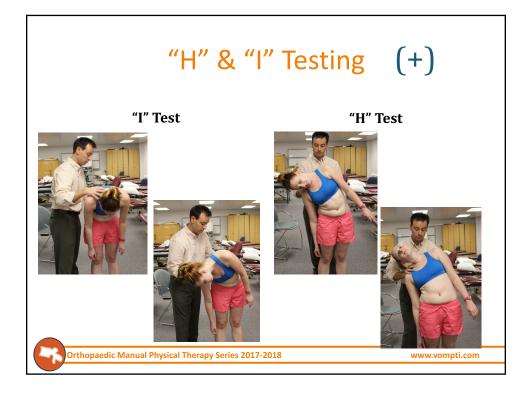
Objective Examination Modification/Additional Testing

- · Lumbar Instability pathology
 - Vertical Compression Test
 - H/I Test
 - Prone Instability Test
 - Endurance Testing

Vertical Compression Test

(+

Ortho


Orthopaedic Manual Physical Therapy Series 2017-2018

www.vompti.com

"H" & "I" Testing

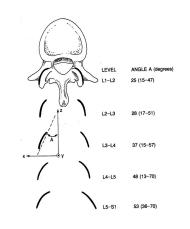
- **H** and I Test: helps to differentiate between hypomobilities and instabilities when there was limited motion during quadrant testing.
- Takes the patient in each quadrant using different movement orders.
- Inconsistent hypomobilities indicate an instability, consistent hypomobilities indicate true hypomobility.
- "H" test
 - Start with SB to one side then flexion, followed by extension
- "I" test
 - Start with flexion or extension, then SB to either side

"H" & "I" Testing

- "H" & "I" Interpretation
 - True hypomobility
 - Patient <u>cannot</u> achieve a quadrant regardless of which movement is initiated
 - Motor Control (segmental stability) Problem
 - Patient <u>can</u> achieve a quadrant depending on order of movement
 - · Example: Limited back left quadrant
 - SB followed by extension (H test) = full motion
 - Extension followed by left SB (I test) = limited motion

Lumbar Objective Examination

- Observation/Postural Assessment/Functional Testing
- Lumbar AROM/PROM/Resisted Testing
 - Quadrants
- · SIJ Screening
- Neurological Testing
 - Segmental
 - Central
- Neurodynamic Testing
- Provocation Testing
 - PA, Compression, torsion
- Biomechanical Examination
 - Lumbar PPIVMs
 - Lumbar PAIVMs

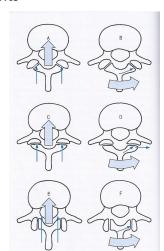


www.vompti.com

Lumbar Anatomy

Facet Joints

- Lumbar orientation
 - Vertical with "C" or "J" shape mostly in the sagital plane
 - Facilitates frontal plane motion, some sagital plane and limits rotation
 - Upper facets resist rotation
 - Lower facets resist anterior translation
 - L4-5 and L5-S1 facets allow more rotation for gait
 - That orientation allows for more torsional forces and annular damage

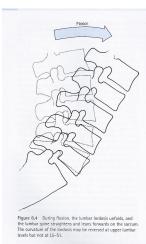


Orthopaedic Manual Physical Therapy Series 2017-2018

Lumbar Anatomy

Facet Joints

- Facet Orientation
 - Ideal orientation is 45° from sagital plane
 - Resists both anterior translation and rotation
 - Greater than 45° provides less resistance to rotation
 - Less then 45°provides more resistance to rotation



Orthopaedic Manual Physical Therapy Series 2017-2018

www.vompti.com

Lumbar Biomechanics Flexion

- Vertebrae rotates anteriorly in the sagital plane
- Vertebrae translates anteriorly in the sagital plane
- Lordosis reverses in the upper lumbar spine and decreases in the lower lumbar spine
- Z Joints glide superior/anterior

Orthopaedic Manual Physical Therapy Series 2017-2018

Lumbar Biomechanics

- Anterior sagital rotation restrained by
 - Joint capsule
 - Supra & Interspinous ligaments
 - Ligamentum flavum & PLL
 - IV Disc
- · Anterior sagital translation restrained by
 - Facet contact
 - Supraspinous ligament
 - IV Disc

Orthopaedic Manual Physical Therapy Series 2017-2018

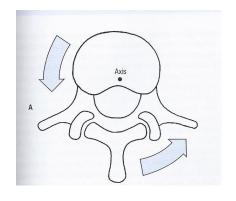
www.vompti.com

Lumbar Biomechanics Extension

- Vertebrae rotates posteriorly in the sagital plane
- Vertebrae translates posteriorly in the sagital plane
- Accentuates lumbar lordosis especially in the lower lumbar spine
- Z Joints glide inferior/posterior
 - Z joint becomes WB

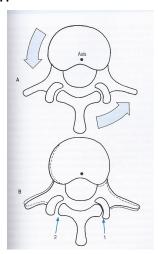
Lumbar Biomechanics

Extension


- Extension restrained by
 - Contact of SP's
 - Contact of facet processes
 - Contact of inferior facet process with lamina of subjacent vertebrae
 - ALL
 - IV Disc

www.vompti.com

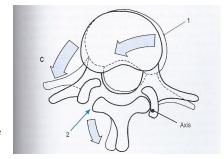
Lumbar Biomechanics Rotation


- Spin in the transverse plane around an axis in the posterior vertebral body
 - Very small amount of motion <5°

Orthopaedic Manual Physical Therapy Series 2017-2018

Lumbar Biomechanics Rotation

- · Rotation restrained by
 - Contact of contralateral facet joint
 - Ipsilateral facet joint capsule
 - IV Disc specifically the annular fibers



Orthopaedic Manual Physical Therapy Series 2017-2018

www.vompti.com

Lumbar Biomechanics Rotation

- 1/2 of the annular fibers will slacken and the other 1/2 will become taught
 - 3° of rotation can lead to microscopic injury to the annulus
- IAP and SAP compress
 - If rotation continues IAR changes from vertebral body to facet joint
 - Distraction of ipsilateral facets increases and annular fibers are further stressed
 - 12° of rotation can lead to macroscopic injury

Orthopaedic Manual Physical Therapy Series 2017-2018

Lumbar Biomechanics Side Bending

- Vertebrae rotates in the frontal plane
 - May involve conjunct rotation in the transverse plane that is not agreed upon
- Ipsilateral facet glides inferior/posterior (extension)
- Contralateral facet glides superior/anterior (flexion)

www.vompti.com

Lumbar Biomechanics

Motion Coupling

- No true consensus
 - May be ipsilateral
 - May be contralateral
 - May depend on starting position or which movement initiates

Orthopaedic Manual Physical Therapy Series 2017-2018

Lumbar Biomechanics

Motion Coupling

- Fryettes Concept for Thoracic and Lumbar Spine
 - In a neutral position, sidebending and rotation occur in opposite directions
 - In a flexed position sidebending and rotation occur in the same direction
 - Not in extension (still opposite)
 - If motion is introduced in one plane, motion in the other 2 planes will be restricted

www.vompti.com

Lumbar Biomechanical Exam PPIVM's

• **PPVIM's**: used to assess osteokinematic movement of individual segments. Based on the findings with the movement tests and/or positional tests, perform the appropriate PPIVM.

Lumbar Biomechanical Exam PPIVM's

Flexion

- Palpate the inter-spinous spaces and the other grasps the pt's lower legs
- The therapist flexes the spine through the hips and pelvis palpating the inter-spinous spaces moving through full range each time and back to neutral

Orthopaedic Manual Physical Therapy Series 2017-2018

www.vompti.com

Lumbar Biomechanical Exam PPIVM's

Extension

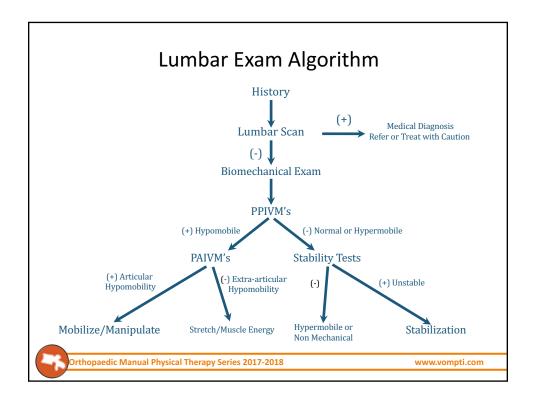
- Palpate the inter-spinous spaces and the other grasps the pt's lower legs
- The therapist extends the spine through the hips and pelvis palpating the inter-spinous spaces moving through full range each time and back to neutral

Lumbar Biomechanical Exam PPIVM's

· Side Bending

- Palpate the inter-spinous spaces and the other grasps the pt's lower legs or rests forearm on top of pelvis
- The therapist SB's the spine ipsilaterally either through the legs by pulling up, or through the pelvis by pushing through the pelvis
- The therapist SB's the spine contralaterally either through the legs by lowering them down to the floor, or through the pelvis by pulling down on the pelvis

Lumbar Objective Examination


Observation/Postural Assessment/Functional Testing

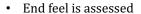
What else to assist R/I primary hypothesis?

- Lumbar AROM/PROM/Resisted Testing
 - Quadrants
- · SIJ Screening
- · Neurological Testing
 - Segmental
 - Central
- Neurodynamic Testing
- · Provocation Testing
 - PA, Compression, torsion
- Biomechanical Examination
 - Lumbar PPIVMs
 - Lumbar PAIVMs

- Lumbar Instability pathology
 - Vertical Compression Test
 - H/I Test
 - Prone Instability Test
 - Endurance Testing

Orthopaedic Manual Physical Therapy Series 2017-2018

Lumbar Biomechanical Exam PAIVM's


- PAIVM's: Passive Arthrokinematic Intervertebral Mobility Testing
 - If the arthrokinematic glide is stiff, the hypomobility is articular.
 - If the arthrokinematic glide is normal and the osteokinematic was stiff, the hypomobility is extra-articular.
 - If the arthrokinematic is normal or excessive and the osteokinematic was normal or excessive, the hypermobility needs to be assessed with stability testing.

Lumbar Biomechanical Exam PAIVM's

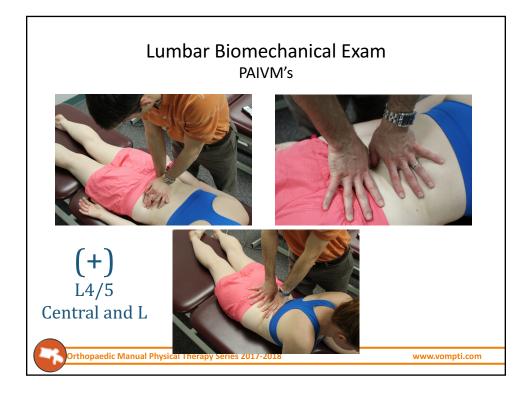
Flexion

- Tested in the position of the PPIVM when abnormal motion is found
- Test the arthrokinematic glide by moving the inferior vertebrae inferoposterior, fixating the other vertebrae
- The therapist assists the glide by tilting the pelvis posteriorly with the forearm

Orthopaedic Manual Physical Therapy Series 2017-2018

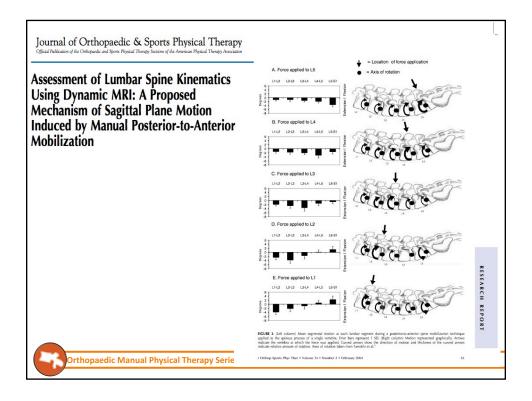
www.vompti.com

Lumbar Biomechanical Exam PAIVM's


Extension

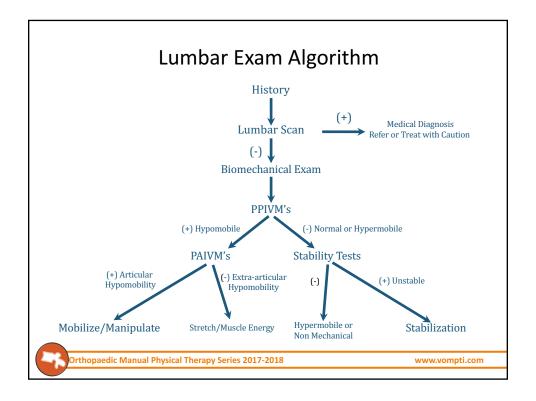
- Tested in the position of the PPIVM when abnormal motion is found
- Test the arthrokinematic glide by moving the inferior vertebrae superoanterior, fixating the superior vertebrae
- The therapist assist the glide of the segment by tilting the pelvis backwards with the forearm
 - · End feel is assessed

(+) L4/5



Segmental mobility of the lumbar spine during a posterior to anterior mobilization: assessment using dynamic MRI

- Assessing P/A pressure under MRI
 - Extension was always produced at the level being assessed
 - PA pressure to L3-4, L4-5 or L5-S1 produced extension at all other lumbar spinal levels
 - PA pressure to L1-2 or L2-3 produced flexion at the 3 caudal levels



PA Mobility Testing

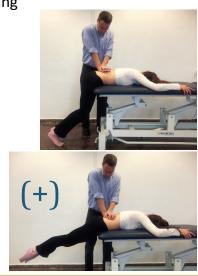
- · Good agreement for pain provocation
- · Fair to poor agreement on mobility assessment
 - Better consensus with hypomobility than hypermobility
- Extension is always produced at the level being assessed
- PA to the upper lumbar spine seems to create a flexion moment to the lower lumbar spine

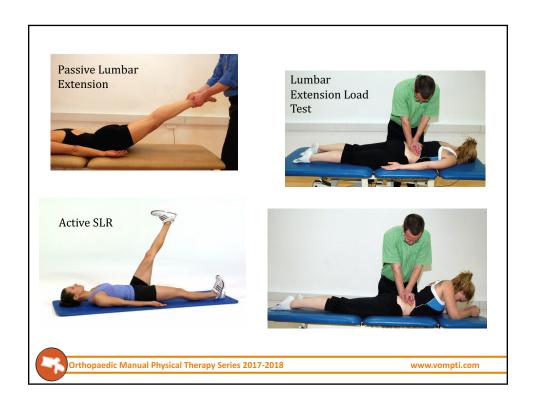
Objective Examination Modification/Additional Testing

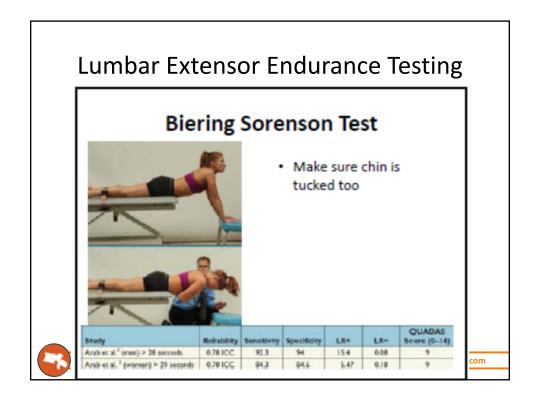
- Lumbar Instability pathology
 - Vertical Compression Test
 - H/I Test
 - Prone Instability Test
 - Endurance Testing

The Interrater Reliability of Physical Examination Tests That May Predict the Outcome or Suggest the Need for Lumbar Stabilization Exercises

journal of orthopaedic eartheta sports physical therapy \mid volume 43 \mid number 2 \mid february 2013 \mid


- Good inter-rater reliability found for tests in CPR and additional testing
 - Aberrant motion with AROM
 - Passive SLR
 - Active SLR
 - Passive lumbar extension test
 - Prone instability test
 - Lumbar extension load test


www.vompti.com


Lumbar Biomechanical Exam Stability Testing

- Prone instability test
- Patient prone, with the trunk supported on the examining table and the feet resting on the floor.
- PT performs a PA pressure to each level of the lumbar spine.
 - If pain is provoked at a certain level, the patient lifts their feet off the floor and the PA pressure is repeated.
 - Positive test if the pt's pain goes away
- Can modify pending irritability and ability of patient

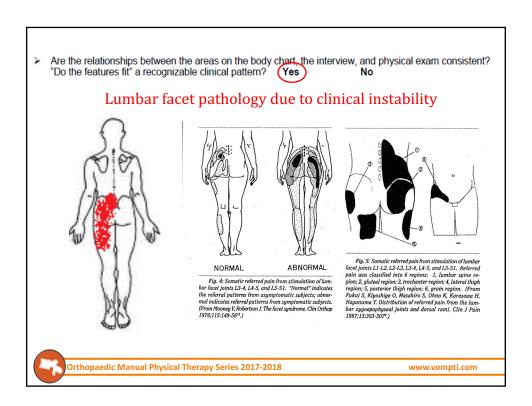
Orthopaedic Manual Physical Therapy Series 2017-2018

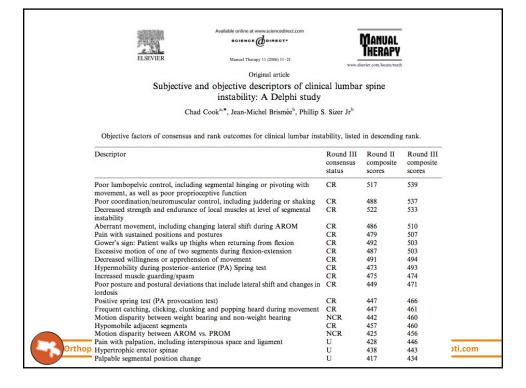
Clinical Tests to Diagnose Lumbar Segmental Instability: A Systematic Review

- Looking a tests able to identify structural instability (not functional instability) due to...
 - Severe disc degeneration
 - Discectomy's
 - Laminectomy's
 - Fusions (adjacent segments)
 - Spondylolisthesis

PLE found to be the only test with sufficient sensitivity and specificity and LR+ (8.8)

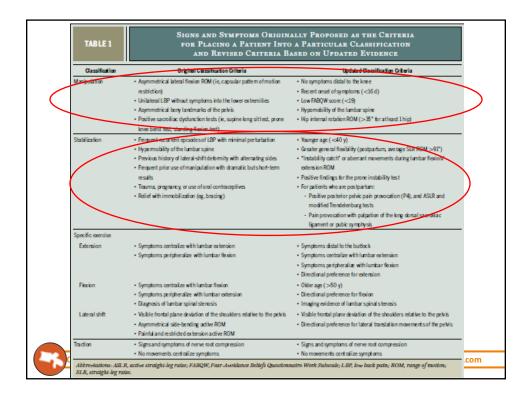
rthopaedic Manual Physical Therapy Series 2017-2018


www.vompti.com


Physical Exam *Asterisks* Signs/Symptoms (Special tests, Movement/Joint Dysfunction, Posture, Palpation, etc)

- "Lazy stander", hangs on "Y" ligaments
- (+) Vertical Compression Test
- Lumbar AROM: (+) Flexion, Ext, Ext/L SB Quadrant
- Poor control upon return from flexion, walks up thighs
- (+) H/I Test with inconsistent Ext/L SB quadrant
- Neuro (-)
- Neurodynamic testing (-)
- Hip and SIJ Clearing (-). Hip IR = 45 (R), 40(L)
- (+) PA for stiffness at T12-L2 and pain at L4-5
- (+) Prone Instability Test L4/5
- (+) PPIVM/PAIVM into Ext/inferior glide at L4/5 for symptom and guarding/spasm more so than stiffness
- (+) PAIVM into extension glide L1/2 and L5/S1
- ODI = 32% perceived disability
- FABQ(W) = 15

Orthopaedic Manual Physical Therapy Series 2017-2018


[CLINICAL COMMENTARY]

JULIE M. FRITZ, PT, PhD, ATC1 . JOSHUA A. CLELAND, PT, PhD, OCS, FAAOMPT2 . JOHN D. CHILDS, PT, PhD, MBA, OCS, FAAOMPT3

Subgrouping Patients With Low Back Pain: Evolution of a Classification Approach to Physical Therapy

| June 2007 | volume 37 | number 6 | journal of orthopaedic & sports physical therapy

Orthopaedic Manual Physical Therapy Series 2017-2018

ARTICLE

A Clinical Prediction Rule To Identify Patients with Low Back Pain Most Likely To Benefit from Spinal Manipulation, A Validation Study

Maj John D. Childs, PhD, PT; Julie M. Fritz, PhD, PT; Timothy W. Flynn, PhD, PT; James J. Irrgang, PhD, PT; Maj Kevin K. Johnson, PT, Maj Guy R. Majkowski, PT; and Anthony Delitto, PhD, PT

- Predictor Variables
 - Pain does not travel below the knee
 - Onset ≤ 16 days ago
 - Lumbar hypomobility
 - Either hip has > 35° of internal rotation
 - FABQ Work score < 19
- 4 or more variables
 - -+LR 24.4

www.vompti.com

ORIGINAL ARTICLE

Preliminary Development of a Clinical Prediction Rule for Determining Which Patients With Low Back Pain Will Respond to a Stabilization Exercise Program

Gregory E. Hicks, PhD, PT, Julie M. Fritz, PhD, PT, ATC, Anthony Delitto, PhD, PT, Stuart M. McGill, PhD

Arch Phys Med Rehabil Vol 86, September 200

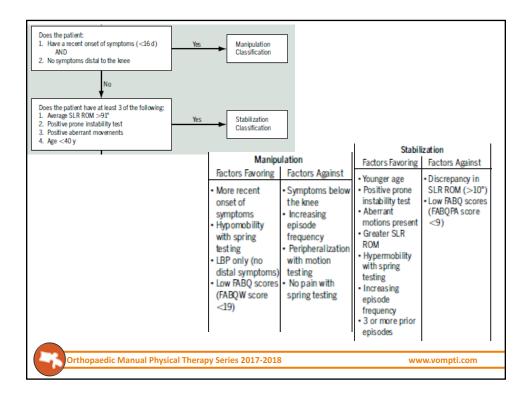
- Predictive Variables for Stabilization Success
 - \square Age < 40 y/o
 - Average SLR > 91 degrees
 - Aberrant Movement Pattern
 - (+) Prone Instability Test (PIT) No hypermobility
- 3/4 Predictors: (+) LR = 4.0

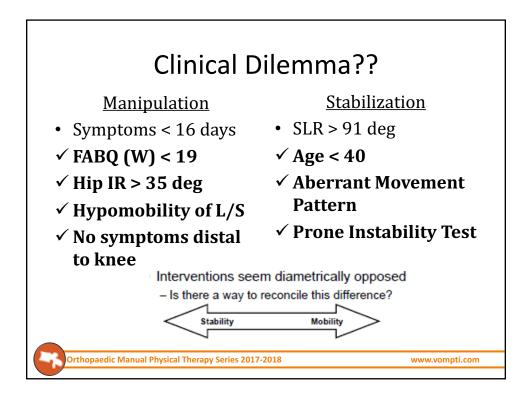
- Predictor Variables for Stabilization Failure
 - (-) Prone Instability Test
 - No aberrant movement
 - FABQ score < 9
 - No hypermobility observed in the lumbar spine

A Clinical Prediction Rule to Identify Patients With Low Back Pain Who Are Likely to Experience Short-Term Success Following Lumbar Stabilization Exercises: A Randomized Controlled Validation Study

January 2014 | volume 44 | number 1 | journal of orthopaedic ♂ sports physical therapy

- Attempt to validate original study failed
- Aberrant movement and + prone instability test cluster was most responsive to stabilization exercises
 - "modified CPR"




www.vompti.com

Aberrant Movements

- · Painful arc with lumbar flexion
- Painful arc with return from lumbar flexion
- Instability catch
- Gower's sign
- Reverse lumbopelvic rhythm

CLINICAL GUIDELINES

ANTHONY DELITTO, PT, PhD • STEVEN Z. GEORGE, PT, PhD • LINDA VAN DILLEN, PT, PhD • JULIE M. WHITMAN, PT, DSc GWENDOLYN SOWA, MD, PhD • PAUL SHEKELLE, MD, PhD • THOMAS R. DENNINGER, DPT • JOSEPH J. GODGES, DPT, MA

Low Back Pain

Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability, and Health from the Orthopaedic Section of the American Physical Therapy Association

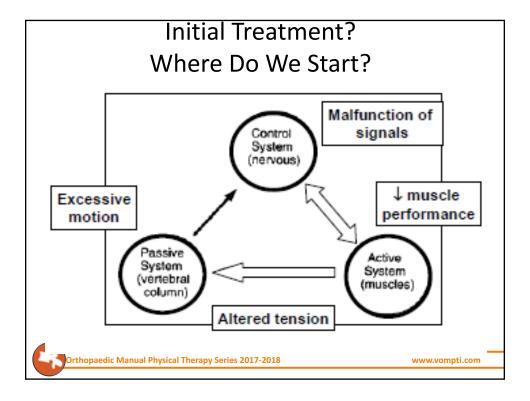
J Orthop Sports Phys Ther. 2012;42(4):A1-A57. doi:10.2519/jospt.2012.0301

www.vompti.com

A INTERVENTIONS - MANUAL THERAPY

Clinicians should consider utilizing thrust manipulative procedures to reduce pain and disability in patients with mobility deficits and acute low back and back-related buttock or thigh pain. Thrust manipulative and nonthrust mobilization procedures can also be used to improve spine and hip mobility and reduce pain and disability in patients with subacute and chronic low back and back-related lower extremity pain.

INTERVENTIONS – TRUNK COORDINATION, STRENGTHENING, AND ENDURANCE EXERCISES


Clinicians should consider utilizing trunk coordination, strengthening, and endurance exercises to reduce low back pain and disability in patients with subacute and chronic low back pain with movement coordination impairments and in patients post-lumbar microdiscectomy.

A INTERVENTIONS – PROGRESSIVE ENDURANCE EXERCISE AND FITNESS ACTIVITIES

Clinicians should consider (1) moderate- to high-intensity exercise for patients with chronic low back pain without generalized pain, and (2) incorporating progressive, low-intensity, submaximal fitness and endurance activities into the pain management and health promotion strategies for patients with chronic low back pain with generalized pain.

GRAD	ES OF RECOMMENDATION	STRENGTH OF EVIDENCE	
A	Strong evidence	A preponderance of level I and/or level II studies support the recommendation. This must include at least 1 level I study	
В	Moderate evidence	A single high-quality randomized con- trolled trial or a preponderance of level Il studies support the recommendation	
c	Weak evidence	A single level II study or a preponder- ance of level III and IV studies including statements of consensus by content experts support the recommendation	
D	Conflicting evidence	Higher-quality studies conducted on this topic disagree with respect to their conclusions. The recommendation is based on these conflicting studies	
E	Theoretical/ foundational evidence	A preponderance of evidence from animal or cadaver studies, from conceptual models/principles, or from basic sciences/bench research support this conclusion	
F	Expert opinion	Best practice based on the clinical experience of the guidelines develop- ment team	

Orthopaedic Manual Physical Therapy Series 2017-2018

- What is your primary treatment Objective after initial evaluation?
 - Education:

Educate pt on condition and importance of stability

Manual Therapy: (Specific Technique)

Lumbar joint mobilization /manipulation to improve mobility adjacent to surgery

Exercise Prescription: (Specific)

Lumbar stabilization therapy

Other:

Belt?

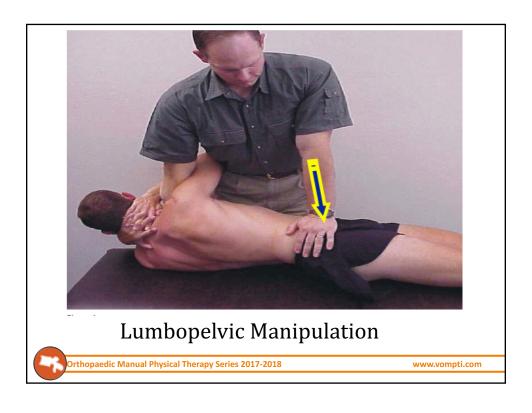
Initial Treatment?

SPINE Volume 34, Number 25, pp 2720-2729

Comparison of the Effectiveness of Three Manual Physical Therapy Techniques in a Subgroup of Patients With Low Back Pain Who Satisfy a Clinical Prediction Rule

A Randomized Clinical Trial

Joshua A. Cleland, PT, PhD,*† Julie M. Fritz, PT, PhD, ATC,‡§ Kornelia Kulig, PT, PhD,¶¶ Todd E. Davenport, DPT,** Sarah Eberhart, PT,† Jake Magel, PT, DSc,†† and John D. Childs, PT, PhD‡‡


Orthopaedic Manual Physical Therapy Series 2017-2018

www.vompti.com

Right Side Flexion/Gap Mobilization or Manipulation

Risks

- Haldeman and Rubenstein (spine 1992)
 - Reviewed literature over 77 year period
 - Ten episodes of cauda equina syndrome following lumbar manipulation reported
 - Estimated Risk: <1 per 100 million manipulations

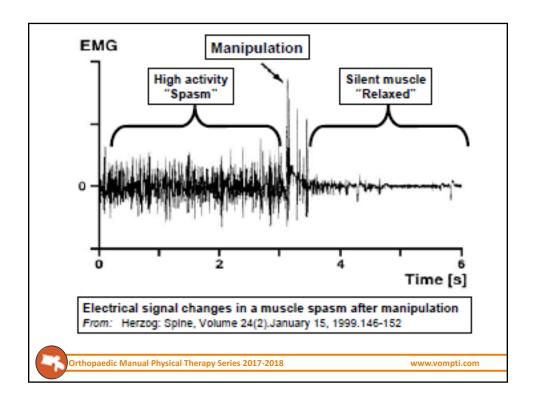
www.vompti.com

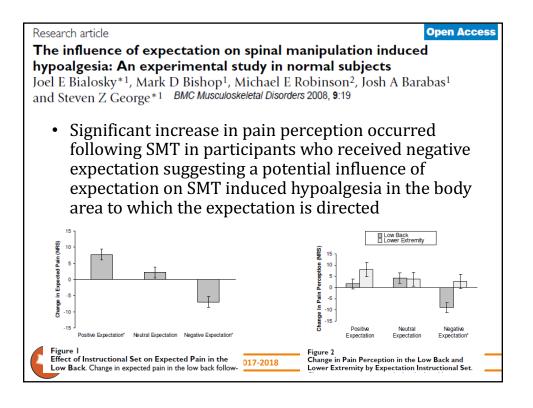
Risks

- Senstad et al (Spine, 1997)
 - Surveyed 1058 pts treated with spinal manipulation by DC's in Norway
 - 75% of all Rxs included manip to the Lx Spine
 - No severe complications noted
 - 55% reported at least one side effect: local discomfort 53%, Fatigue 11%, HA 12%, Radiating discomfort 10%

Why does manipulation work? One Theory

- Reflexogenic effect
- · Resets signals
 - Between body and brain and spinal cord
- Allows muscle to reach optimal contraction
 - Breaks up spasm
 - Reduces inhibition




www.vompti.com

Evidence for reflexogenic effect

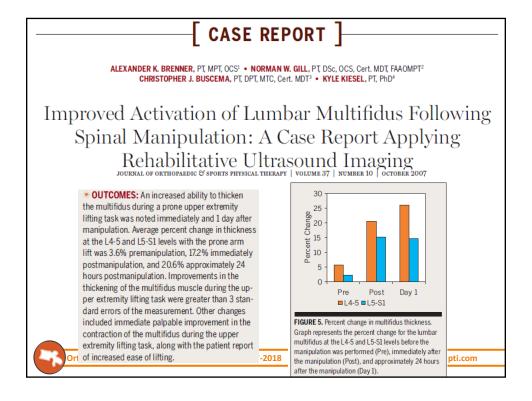
- Improves H-reflex: unilateral lumbar HNP
 - Floman, 1997, Eur Spine J
- Decreases in quadriceps inhibition in anterior knee pain patients with SIJ manipulation
 - Suter, 1999, *JMMT*
- Decreases EMG response in back muscles
 - Herzog, 1999, Spine

Spinal Manipulative Therapy for Acute Low Back Pain

SPINE Volume 38, Number 3, pp E158–E177 ©2013, Lippincott Williams & Wilkins

An Update of the Cochrane Review

- 20 RCT's examined
 - 6 had low bias risk
- "Manipulative therapy" was considered HVLAT, or mobilization
- No evidence to show that "manipulative therapy" was more effective than... when treating acute LBP
 - Adjunct therapy
 - Sham treatment
 - Inert intervention (eg: low grade US)

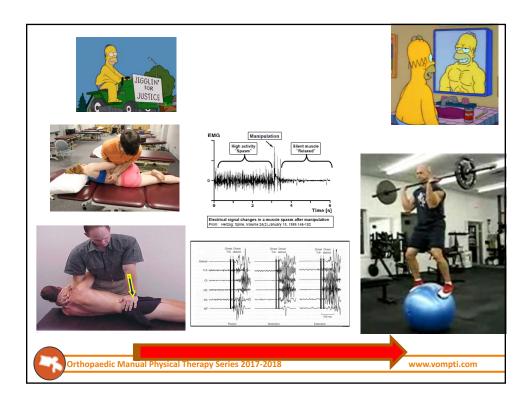

www.vompti.com

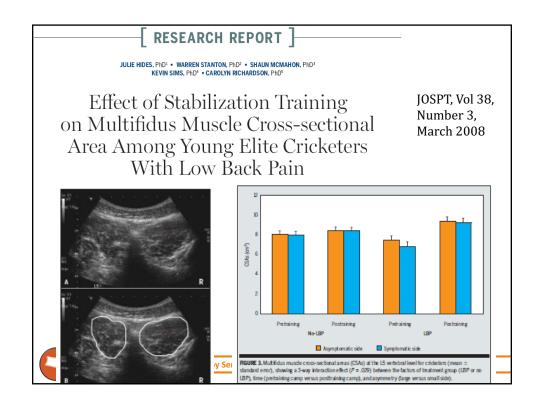
Spinal Manipulative Therapy for Acute Low Back Pain

An Update of the Cochrane Review

- Some short term pain relief and functional improvements seen in a few of the RCTs examined
- Most pts with acute LBP get better on their own so it is difficult to have interventions show significant improvements.

Case report

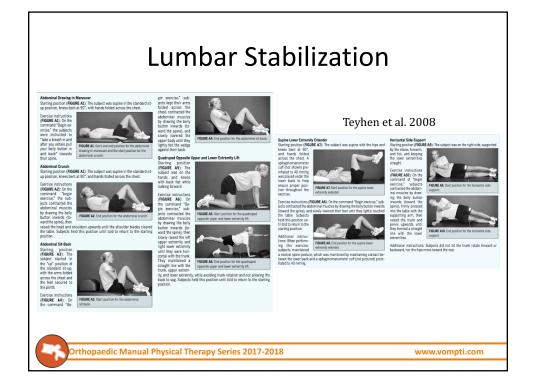

Improved contraction of the transversus abdominis immediately following spinal manipulation: A case study using real-time ultrasound imaging

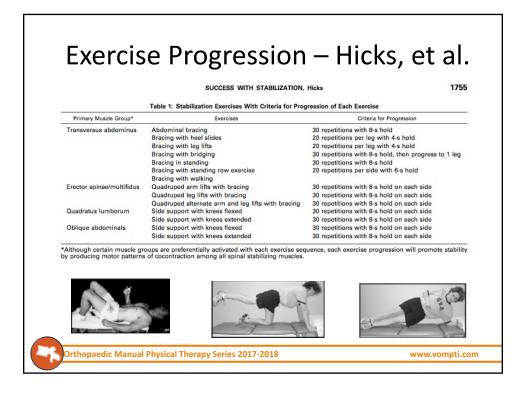

Norman W. Gill^{a,*}, Deydre S. Teyhen^b, Ian E. Lee^a

N.W. Gill et al. / Manual Therapy 12 (2007) 280-285

- Effects of spinal manipulation on TrA activation
 - Significant change in TrA resting and contracted "thickness" found with US immediately following HVLA

Orthopaedic Manual Physical Therapy Series 2017-2018





Changes in Deep Abdominal Muscle Thickness During Common Trunk-Strengthening Exercises Using Ultrasound Imaging

- Teyhen (JOSPT 2008)
 - US assessment of TA and internal oblique contraction (asymptomatic subjects)
 - · Best recruitment of TA
 - DIM
 - Quadruped opposite UE/LE with DIM
 - Best recruitment of TA & Int. Oblique
 - · Side plank with DIM
 - · Abdominal crunch with DIM

Palpation of Multifidus

 "Gently swell out your muscles under my fingers without moving your spine or pelvis. Hold the contraction while breathing normally."

The evaluation of lumbar multifidus muscle function via palpation: reliability and validity of a new clinical test

The Spine Journal ■ (2013) ■

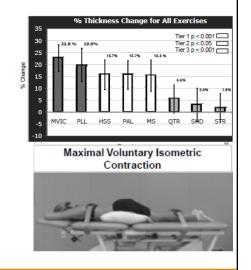
- Multifidus lift test
 - Pt in prone asked to raise contra-lateral UE 5 cm off table
 - Therapist assessed multifidus activation via palpations at L4-5 and L5-S1 interspace
- Inter-rater reliability: (K=.75-.81)
- Validity: Good at L4-5 not L5-S1
 - Reference standard: US

www.vompti.com

Multifidus Facilitation Techniques

• Weight Shifts

 Contralateral Loaded Prone Arm Lift



Use 1.5-3.0 lbs load

Orthopaedic Manual Physical Therapy Series 2017-2018

Best Exercise for Multifidus?

- 8 commonly prescribed exercises for LM
- % thickness change measured with RTUS
- Prone MVIC best for thickness change

www.vompti.com

Balance and Perturbation Training

- Higher postural sway
 - Van Daele et al 2009
- Altered body inclination associated with anticipated postural instability
 - Brumagne et al 2008
- Decreased variability of anticipatory postural adjustments and increased stiffness with perturbations
 - Jacobs et al 2009, Mok et al 2007, Hodges et al 2009

Orthopaedic Manual Physical Therapy Series 2017-2018

RESEARCH ARTICLE

Open Access

An update of stabilisation exercises for low back pain: a systematic review with meta-analysis

Smith et al. BMC Musculoskeletal Disorders 2014, 15:416

Conclusion: There is strong evidence stabilisation exercises are not more effective than any other form of active exercise in the long term. The low levels of heterogeneity and large number of high methodological quality of available studies, at long term follow-up, strengthen our current findings, and further research is unlikely to considerably alter this conclusion.

Orthopaedic Manual Physical Therapy Series 2017-2018

www.vompti.com

CRITICAL REVIEW

The myth of core stability

Journal of Bodywork & Movement Therapies (2010) 14, 84-98

- That certain muscles are more important for stabilization of the spine than other muscles, in particular transversus abdominis (TrA).
- That weak abdominal muscles lead to back pain
- That strengthening abdominal or trunk muscles can reduce back pain
- That there is a unique group of "core" muscle working independently of other trunk muscles
- That back pain can be improved by normalizing the timing of core muscles
- That there is a relationship between stability and back pain

CRITICAL REVIEW

The myth of core stability

- Weak trunk muscles, weak abdominals and imbalances between trunk muscles groups are not a pathology just a normal variation.
- The division of the trunk into core and global muscle system is a reductionist fantasy, which serves only to promote CS.
- Weak or dysfunctional abdominal muscles will not lead to back pain.
- Tensing the trunk muscles is unlikely to provide any protection against back pain or reduce the recurrence of back pain.
- Core stability exercises are no more effective than, and will not prevent injury more than, any other forms of exercise or physical therapy. Any therapeutic influence is related to the exercise effects rather than stability issues.
- Patients who have been trained to use complex abdominal hollowing and bracing maneuvers should be discouraged from using them.

www.vompti.com

Pattern Recognition

Identify the key subjective and physical features (i.e. **clinical pattern**) that would help you recognize this disorder in the future.

Subjective	Physical		
Episodic nature becoming more frequent	Aberrant movement with ROM assessment		
	Inconsistent ROM with H & I testing		
Transitional movements painful	+ stability testing		
Back pain with referred pain into the buttock and thigh			

Orthopaedic Manual Physical Therapy Series 2017-2018

Prevalence of Adjacent Segment Degeneration After Spine Surgery

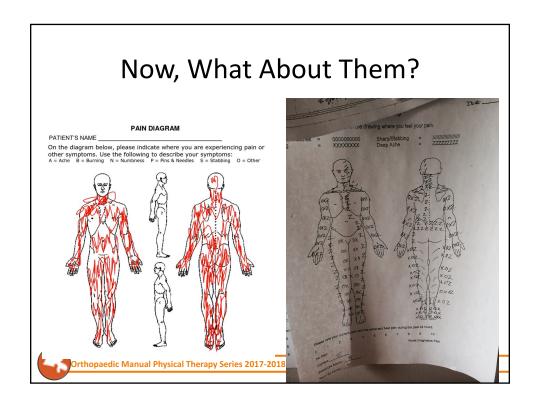
A Systematic Review and Meta-analysis

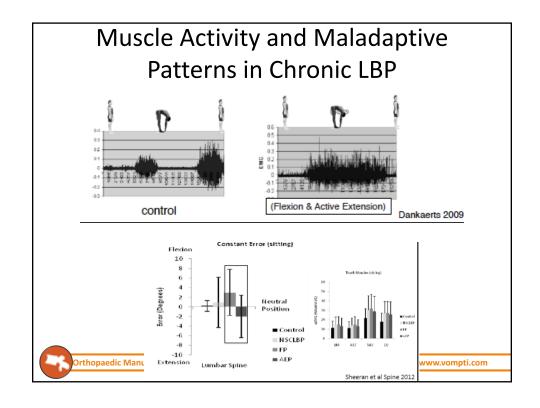
SPINE Volume 38, Number 7, pp 597–608 ©2013, Lippincott Williams & Wilkins

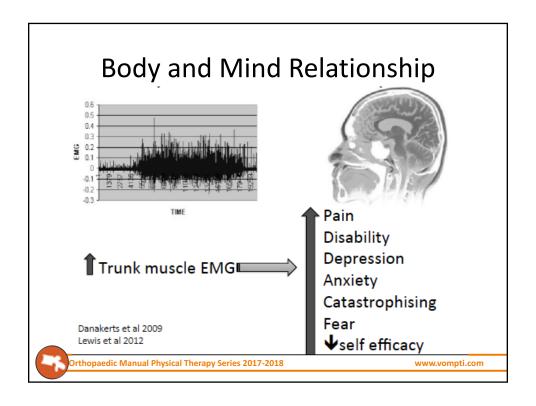
TABLE 2. Subgroup Analysis by Diagnostic Time					
	Radiograph ASD		Symptoms ASD		
Diagnostic Time, yr	Range of Prevalence	Pooled Prevalence	Range of Prevalence	Pooled Prevalence	
0.5 to ≤2	4.8%-82.6%	21.8% (16.0%–27.6%)	0.0%-24.6%	6.5% (4.8%-8.1%)	
>2 to ≤5	8.2%-92.2%	33.6% (21.8%-45.4%)	0.0%-30.3%	12.1% (8.2%–16.0%)	
>5 to ≤10	5.0%-60.6%	37.4% (10.7%-64.1%)	2.8%-20.0%	3.2% (2.5%-4.0%)	

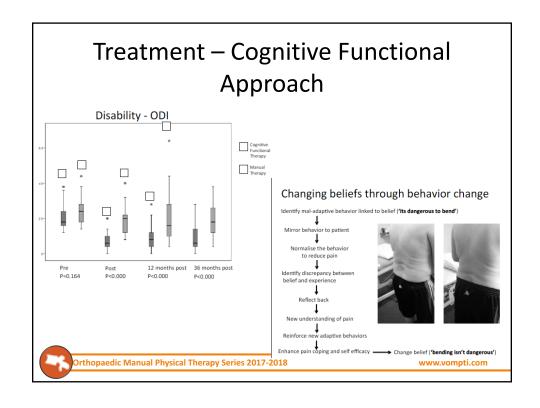
ASD indicates adjacent segment degeneration

- · 94 studies with 34,917 pts included for review
- · Spine surgery is associated with significant risk for ASD
- Increased intradiscal pressure, annular stress and mobility found at adjacent segments


www.vompti.com


Risk for Adjacent Segment and Same Segment Reoperation After Surgery for Lumbar Stenosis


SPINE Volume 38, Number 7, pp 531–539 ©2013, Lippincott Williams & Wilkins


- RCT
 - Examined the reoperation recurrence rate after surgery for lumbar stenosis
 - Variables examined for increased risk
 - · Demographics
 - · Severity of symptoms
 - · Obesity
 - Location of surgery (fusion, lami, decompression)
 - Duration of symptoms
 - Only variable that increased risk for future reoperation
 - » Symptoms greater than 12 months prior to first surgery

